Integrated photonics has grown in the last decade to fill the market with classical devices that offer tremendous SWaP benefits over conventional bulk optics and fiber components. For quantum systems the device losses were still too large to allow for large system scaling as well as too narrow a transparency window to cover all the qubit technologies. Over the last couple years, both industry and government laboratories have worked closely with commercial institutions to address both issues by reducing the waveguide losses, developing low-loss components, and initiating the process to include ultrawide-bandgap photonic materials into the fabrication process. These research areas, the results, and the next steps forward for integrating other materials and qubit systems into the platform will be the subject of my talk.
Speaker's Bio
Dr. Michael Fanto is a Senior Research Physicist with the Air Force Research Laboratory, Information Directorate in the Quantum Technologies Branch located in Rome, New York. He is the lead for the quantum information processing group where he conducts research on quantum photonic integrated circuits (QPICs), heterogeneous qubit integration, entanglement distribution, quantum networking, and quantum information processing. He completed his BS degree in Physics from Utica College, and his Ph.D. in Microsystems Engineering from Rochester Institute of Technology where his thesis focused on ultrawide-bandgap QPICs.